Human Research in Rehabilitation The International Journal for interdisciplinary studies 2019, Vol. 9 (1) 123-130 www.human.ba

DOI: 10.21554/hrr.041915

ISOSCELES TRIANGLES ON THE SIDES OF A TRIANGLE

Sead Rešić¹ Alma Šehanović Amila Osmić

Original scientific paper

Department of Mathematics, Faculty of Science, University of Tuzla, Bosnia and Herzegovina Gymnasium Mesa Selimovic Tuzla, Bosnia and Herzegovina Construction and Geodesy School of Tuzla, Bosnia and Herzegovina

Received: 2019/2/22 Accepted: 2019/4/4

ABSTRACT

Famous construction of Fermat-Toricelly point of a triangle leads to the question is there a similar way to construct other isogonic centers of a triangle in a similar way. For a purpose we remember that Fermat-Torricelli point of a triangle $\triangle ABC$ is obtained by constructing equilateral triangles outwardly on the sides AB,BC and CA. If we denote thirth vertices of those triangles by C_pA_1 and B_1 respectively, then the lines AA_pBB_1 and CC_1 concurr at the Fermat-Torricelli point of a triangle $\triangle ABC$ (Van Lamoen, 2003). In this work we present the condition for the concurrence, of the lines AA_pBB_1 and C_p where C_pA_1 and B_1 are the vertices of an isosceles triangles constructed on the sides AB,BC and CA(not necessarily outwordly) of a triangle $\triangle ABC$. The angles at this work are strictly positive directed so we recommend the reader to pay attention to this fact.

Keywords: Ceva, Menelaus, Stewartes, cevian, concurrency, collinearity, Fermat, Torricelly

INTRODUCTION

Leading idea for this work was Napoleon Triangles and Kiepert Perspectors, submitted by Floor van Lamoen (2003) to Forum Geometricorum in which the complex numbers are used to show the existance and the construction of Fermat-Toricelly point. Observing the hystorical facts we can se the Fermats-Toricelly point is one of the extremal points of a triangle, same as the centroid is. Namely if the point O is constructed in the plane of a triangle Δ ABC then the sum AO+BO+CO is minimal if and onl if O coinsides with Fermat-Toricellis point of a triangle $\triangle ABC$ (Prasolov, 2001). Later as a special case we will see this one leads to the condition $\measuredangle AOC = \measuredangle BOA = \measuredangle COB = \frac{2\pi}{3}$. The sum AO²+BO²+CO² is minimal if and only if O

The sum $AO^2+BO^2+CO^2$ is minimal if and only if O coinsides with the centroid of a triangle $\triangle ABC$ (Alt-shiller-Court, 2007). One can ask the quaestion when the sum $AO^3+BO^3+CO^3$ is minimal, or some other questions. The theorem we present shows that any point in the plane of a triangle can be constructed using an issoceles triangles and certain condition.

¹Correspondence to:

Sead Rešić, Department of Mathematics, Faculty of Science, University of Tuzla, Bosnia and Herzegovina Univerzitetska 4, 75000 Tuzla, Bosnia and Herzegovina Phone:+387 61 101 230 E-mail: sresic@hotmail.com

MAIN THEOREM

 $\frac{\sin(\omega+\alpha)\cdot\sin(\phi+\gamma)\cdot\sin(\beta+\delta)=\sin(\omega+\beta)\cdot\sin(\phi+\alpha)\cdot(\delta+\gamma)}{\sin(\phi-\omega)\cdot\cos(2\alpha-\delta)+\sin(\omega-\delta)\cdot\cos(2\beta-\phi)+\sin(\delta-\phi)\cdot\cos(2\gamma-\omega)=0}$

and C_1 lie in the plane of a triangle such that $\angle ACB^1 =$

Proof:

Let us consider the case

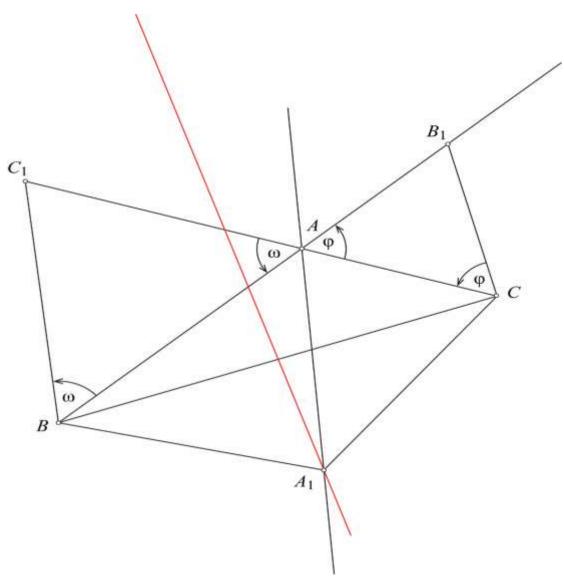
 $\sin(\omega + \alpha) \cdot \sin(\varphi + \gamma) \cdot \sin(\beta + \delta) \cdot \sin(\omega + \beta) \cdot \sin(\varphi + \alpha) \cdot (\delta + \gamma) = 0$

Let $sin(\omega + \alpha) = 0$. Since a triangle $\triangle ABC$ is nondegenerated, thus $\omega + \alpha \neq 0$ so we have

$\omega + \alpha \in \{\pi, 2\pi\}.$

Let $\omega + \alpha = \pi$, then $\angle BAC_1 + \angle CAB = \pi$, which means C_1 lies on the extension of the line CA such that A is between the points C and C_1. Since $\angle BAC_1 = \angle C_1$ $BA = \omega = \pi - \alpha$ then we have $2(\pi - \alpha) < \pi \Rightarrow \alpha > \frac{\pi}{2}$. $\varphi + \alpha = \pi \Rightarrow \sin(\varphi + \alpha) = 0 \Rightarrow$ Let AA_1 and CC_1 meet at A then BB_1 also contains the point A. Thus B_1 lies on the line AB. Since $\angle ACB_1 = \angle AB_1$ $B_1 AC, and \alpha > \frac{\pi}{2}$, then A is between the points B and B_1 . Now we have $\angle ACB_1 = \angle B_1$ AC= $\varphi = \omega$ so we have

 $\sin(\omega + \alpha) \cdot \sin(\varphi + \gamma) \cdot \sin(\beta + \delta) = 0 = \sin(\omega + \beta) \cdot \sin(\varphi + \alpha) \cdot (\delta + \gamma)$



Let AA_1 be parallel to CC_1 , then A_1 lies on the line CA. If BB_1 is also parallel to CC_1 then B_1 is an intersection

Then A_1 is any point on the bisector of the segment BC. point of a line through B parallel to CA and the bisector of the segment CA.

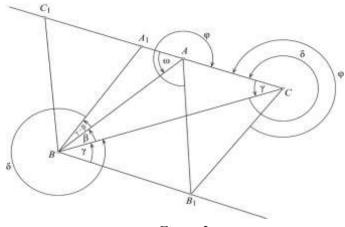


Figure 2.

But then we have

$$4A_1CB + 4BCA = 2\pi \Rightarrow \delta + \gamma = 2\pi \Rightarrow \sin(\delta + \gamma) = 0 \Rightarrow$$

$$\sin(\omega + \alpha) \cdot \sin(\varphi + \gamma) \cdot \sin(\beta + \delta) = 0 = \sin(\omega + \beta) \cdot \sin(\varphi + \alpha) \cdot (\delta + \gamma)$$

the point C, is on the line CA such But then we have

Let $\omega + \alpha = 2\pi$ so the point C_1 is on the line CA such But then we hat that C and C_1 are on the same side of the point A.

$$\measuredangle BAC_1 = \measuredangle C_1BA \Rightarrow 2\pi - \measuredangle BAC_1 = 2\pi - \measuredangle C_1BA \Rightarrow$$

 $\measuredangle C_1AB = \measuredangle ABC_1 \Rightarrow \alpha < \frac{\pi}{2}$. Let CC_1 and AA_1 meet at the point A. Then BB_1 contains the point

A only if B_1 is on the line BA. Then we have

$$\measuredangle B_1AC = \measuredangle BAC_1 \Rightarrow \varphi = \omega \Rightarrow \varphi + \alpha = 2\pi \Rightarrow \sin(\varphi + \alpha) = 0 \Rightarrow$$

 $\sin(\omega + \alpha) \cdot \sin(\varphi + \gamma) \cdot \sin(\beta + \delta) = 0 = \sin(\omega + \beta) \cdot \sin(\varphi + \alpha) \cdot (\delta + \gamma)$

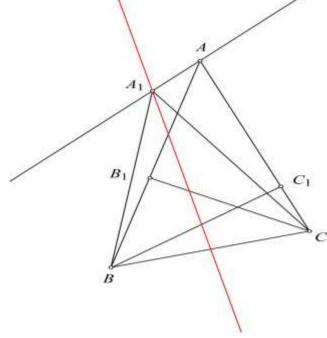


Figure 3.

Let AA₁ be parallel to the line CC₁, Then BB₁ parallel to them so B₁ is an interesection point of the line ment AC. But then $\measuredangle A_1CB + \measuredangle BCA = 2\pi \Rightarrow \delta + \gamma = 2\pi \Rightarrow \sin(\delta + \gamma) = 0 \Rightarrow$

$$\sin(\omega + \alpha) \cdot \sin(\varphi + \gamma) \cdot \sin(\beta + \delta) = 0 = \sin(\omega + \beta) \cdot \sin(\varphi + \alpha) \cdot (\delta + \gamma)$$

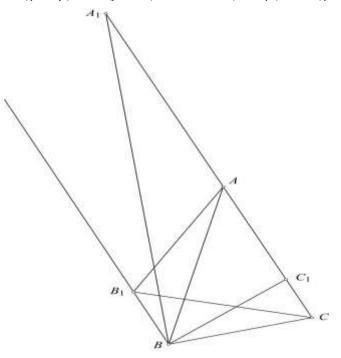


Figure 4.

Similarly we reconsider the cases remained from the equation

 $\sin(\omega + \alpha) \cdot \sin(\varphi + \gamma) \cdot \sin(\beta + \delta) \cdot \sin(\omega + \beta) \cdot \sin(\varphi + \alpha) \cdot (\delta + \gamma) = 0$

As we can notice, the intersection points of the lines or the point at infinity. $AA_1, BB_1 and CC_1 are the triangle vertices A, B and C$ Suppose now that $\sin(\omega + \alpha) \cdot \sin(\varphi + \gamma) \cdot \sin(\beta + \delta) \cdot \sin(\omega + \beta) \cdot \sin(\varphi + \alpha) \cdot (\delta + \gamma) \neq 0$

Consider the points A and A_1 being from distinct sides of a line BC. Let the line AA_1 meets the line BC at the point A'. Let the line through A₁ parallel

to BC meets lines AB and AC at the points D and E respectively. From the similarity $\triangle ABC \sim \triangle ADE$ we have

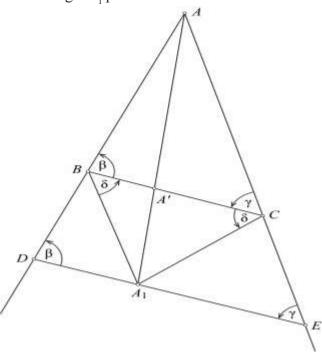


Figure 5.

$$\frac{A_1D}{A_1E} = \frac{BA'}{A'C}$$

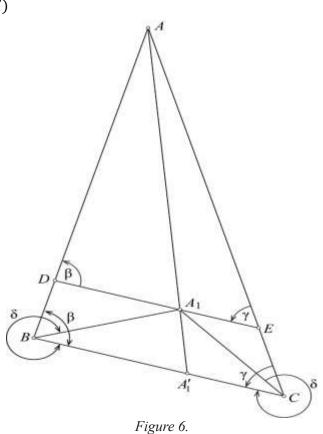
From the sine theorem we have

$$A_1 D = \frac{A_1 B}{\sin\beta} \cdot \sin(\beta + \delta)$$
$$A_1 E = \frac{A_1 C}{\sin\gamma} \cdot \sin(\gamma + \delta)$$

Dividing we get

$\frac{BA'}{=}$		$\sin(\beta + \delta)$
$\overline{A'C}$ –	sinβ	$\sin(\gamma + \delta)$

Let now A and A_1 be from the same side of the line BC Let the line AA_1 meets the line BC at the point A'. Let the line through A₁ parallel to BC meets lines AB and AC at the points D and E respectively. From the similarity $\triangle ABC \sim \triangle ADE$ we have



$$\frac{A_1D}{A_1E} = \frac{BA'}{A'C}$$

From the sine theorem we have

$$A_1 D = \frac{A_1 B}{\sin\beta} \cdot \sin(\beta + \delta - 2\pi)$$

 $A_1 E = \frac{A_1 C}{sin\gamma} \cdot \sin(\gamma + \delta - 2\pi)$

Dividing we get

$$\frac{BA'}{A'C} = \frac{\sin\gamma}{\sin\beta} \cdot \frac{\sin(\beta + \delta)}{\sin(\gamma + \delta)}$$

So in any case we have
$$\frac{BA'}{A'C} = \frac{\sin\gamma}{\sin\beta} \cdot \frac{\sin(\beta + \delta)}{\sin(\gamma + \delta)}$$

$$\frac{dr}{dC} = \frac{dr}{sin\beta} \cdot \frac{dr}{sin(\gamma + \delta)}$$

Let us define the points B' and C' similarly. By and CC_1 meet at the point or are parallel if and Cevas theorem (Kedlaya, 1999) the lines AA_1, BB_1 only if

$$\frac{BA'}{A'C} \cdot \frac{CB'}{B'A} \cdot \frac{AC'}{C'B} = 1 \Leftrightarrow$$
$$\frac{\sin(\beta + \delta) \cdot \sin(\varphi + \gamma) \cdot \sin(\omega + \alpha)}{\sin(\gamma + \delta) \cdot \sin(\varphi + \alpha) \cdot \sin(\omega + \beta)} = 1 \Leftrightarrow$$

 $\sin(\varphi - \omega) \cdot \cos(2\alpha - \delta) + \sin(\omega - \delta) \cdot \cos(2\beta - \varphi) + \sin(\delta - \varphi) \cdot \cos(2\gamma - \omega) = 0$

CONSEQUENCES WHEN $\delta = \phi = \omega$

Corollary 1. On the sides of a nondegenerated triangle \triangle ABC are constructed regular n-gons outwardly, AC₂... C_{n-1} B,BA₂...A_{n-1}C and CB₂...B_{n-1}A.Let C₁,A₁ and B₁ be the centers of those polygones respectively. Then the lines AA₁,BB₁ and CC₁ concurr.

Proof:

Since the triangles $\triangle AC_1 \ B, \triangle BA_1 \ C$ and $\triangle CB_1 \ A$ are an issoceles triangles constructed on the sides of nondegenerated triangle $\triangle ABC$ and $\delta = \varphi = \omega = \frac{n-2}{2n}\pi$, applying the theorem 1 in its second equivalent form directly implies the claim.

Corollary 2. On the sides of a nondegenerated triangle \triangle ABC are constructed regular 2n+1-gons outwardly, AC₂...C_{2n}B, BA₂...A_{2n} C and CB₂...B_{2n}A..Then the lines AA_{n+1}, BB_{n+1} and CC_{n+1} concurr.

Proof:

Since the triangles $\Delta AC_{n+1}B$,

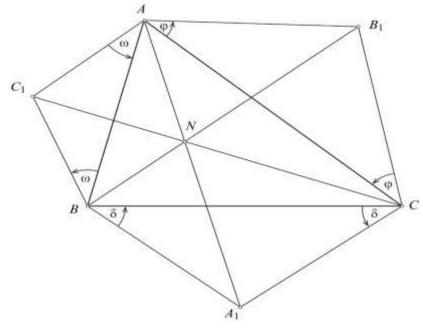
 $\Delta CB_{n+1}A$ are an issoceles triangles constructed on the sides of nondegenerated triangle ΔABC and $\delta = \varphi = \omega = \frac{n-1}{2n}\pi$ applying the theorem 1 in its second equivalent form directly implies the claim.

Corollary 3. On the sides of a nondegenerated triangle \triangle ABC are constructed regular 2n-gons outwardly, AC₂...C_{2n-1}B, BA₂...A_{2n-1}C and CB₂...B_{2n-1}.Let C₁, A₁ and B₁ be themidpoints of the sides A_nA_{n+1}, B_n B_{n+1} and C_nC_{n+1} respectively. Then the lines AA₁,BB₁ and CC₁ concurr.

Proof:

Since the triangles ΔAC_1B , ΔBA_1C and ΔCB_1A are an issoceles triangles constructed on the sides of nondegenerated triangle ΔABC and $\delta=\phi=\omega$, applying the theorem 1 in its second equivalent form directly implies the claim. The corollaries obviously hold when the polygons are constructed inwardly.

Let us just draw the case when all the triangles are outwards



and

 $\Delta BA_{n+1}C$

Figure 7.

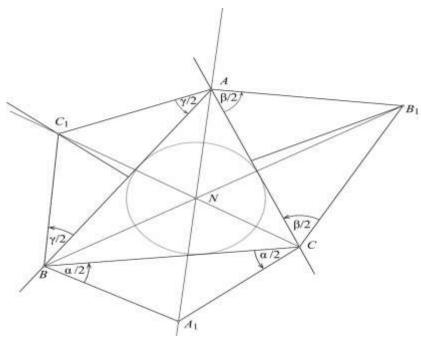
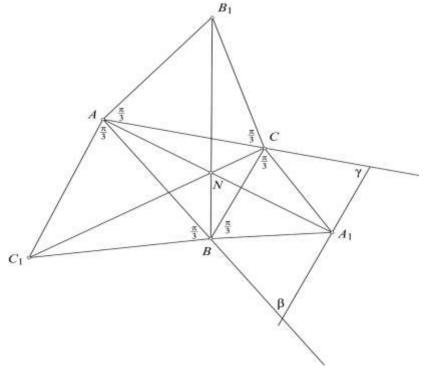


Figure 8.

This is the special case when the lies meet at the incenter.

Then below is the special case when the lines meet at Fermat-Toricelly point (Prasolov, 2001)



CONCLUSION

Any point in the plane of nondegenerated triangle can be constructed using this method except the points belonging to the altitudes of the triangle excluding its vertices which can be constructed. This fact is obvious, any point can be connected to the vertices of a triangle, thus forming a line. The intersections of those three lines with the bisectors of the sides opposing to the vertices respectively, form three vertices of required issoceles triangles, which is not the case only if the one of the points lie on the line containing the altitude. Then connecting this point to the vertex form a line parallel to the bisector of the opposing side, hence these two lines dont meet. So there is no required issoceles triangle. Also we can see that if the point is constructible this way, then the way of construction is unique.

REFERENCES

- Altshiller-Court, N. (2007). College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. New York: Dover Publications, Inc. Mineola.
- Kedlaya, K. (1999). Notes on Euclidean Geometry. Retrieved from http://web.math.rochester.edu/people/faculty/dangeba/geom-080399.pdf.
- Prasolov, V. (2001). *Problems in plane and solid geometry*. (Vol. 1. Plane Geometry). translated and edited by Dimitry Leites. Retrieved from http://e.math.hr/old/afine/planegeo.pdf.
- Van Lamoen, F. (2003). Napoleon Triangles and Kiepert Perspectors. *Forum Geometricorum* 3, pp. 65–71.